Borland Conference 2002 - Pre-conference Tutorial:

Cross-platform Development with C/C++

By Rob Swindell

rob@synchro.net

31
Overview

31.1
What is a Platform?

31.2
What is Portable Source Code?

31.3
Why Develop Cross-platform?

42
Cross-platform Development Strategies

42.1
Migration

42.2
Targeting a Standard Run-time Library (e.g. ANSI, POSIX)

42.2.1
Using ANSI/ISO Standard C/C++ Libraries

52.2.2
Using POSIX C Libraries

62.3
Utilizing a Cross-platform Abstraction Layer

62.3.1
Netscape Portable Runtime (NSPR)

72.3.2
Borland CLX (Component Library for Cross-platform Development)

82.3.3
Qt

82.4
Utilizing a Platform Emulation Layer

82.4.1
From Unix to Windows

92.4.2
From DOS to Unix

92.4.3
From Windows to Unix

92.5
Utilizing the Synchronet XPDEV Library

102.5.1
Source code

102.5.2
Genwrap

102.5.3
Conwrap

102.5.4
Dirwrap

112.5.5
Filewrap

112.5.6
Sockwrap

112.5.7
Threadwrap

122.5.8
Wraptest

123
Cross-platform Development Issues

123.1
File Systems

143.2
Architectures

143.3
Compilers

153.4
Build Tools

153.5
Application Configuration

153.6
Devices

164
Solutions

164.1
Existing Solutions

164.2
Conditional Compilation

164.2.1
Operating System Macros

174.2.2
Compiler Macros

174.2.3
Architecture Macros

1 Overview

This tutorial will cover single-source cross-platform and mixed-compiler development using Borland C++, Kylix C++, and the GNU Compiler Collection (gcc). This tutorial will address areas of interest for both the Windows developer moving to Linux and the Linux developer new to Windows.

1.1 What is a Platform?

For the purpose of this tutorial, a platform is defined as any combination of:

a. operating system

b. architecture

c. build environment

Example operating systems: Windows (several flavors), MacOS, and Unix (many flavors).

Example architectures include: Intel x86, Motorola 68K, PowerPC, MIPS, and ARM.

The build environment consists of the C/C++ compiler, the C run-time library (RTL) linked with your code, the linker (linkage editor), and the project or makefiles files used to automate the build process.

Any project that targets multiple operating systems, architectures, or build environments is considered a cross-platform development project.

1.2 What is Portable Source Code?

I do not encourage using the term “portable code”. It has been my experience that virtually all source code that has been labeled “portable”, is only truly portable to a specific subset of platforms, and therefore the term “portable” cannot be used accurately without clarification – portable to where, exactly?

The term “portable” is usually used to indicate the theoretical potential for a development project.

The term “cross-platform” is usually used to indicate the status of a development project – a project either targets multiple platforms, or it doesn’t. It has either been ported or it hasn’t.

1.3 Why Develop Cross-platform?

· Increased market opportunities by supporting additional and future platforms

· Encourages modular design
· Helps to expose bugs (what may be intermittent on one platform, may be readily reproducible or more easily debugged on another)
· Use of multiple development environments helps to keep code standards-compliant
Cross-platform Development Strategies

There are several strategies to choose from when converting an existing single-platform project to a cross-platform project or when designing a new cross-platform project from scratch.

1.4 Migration

This strategy involves abandoning support for the existing target platform and targeting a new platform, or set of platforms. This strategy is a good choice if the current/original platform is absolutely dead and/or the effort to support it in a cross-platform project cannot be justified. If the project is to be migrated to a single platform, not using cross-platform development techniques, then it is not a cross-platform development project.

1.5 Targeting a Standard Run-time Library (e.g. ANSI, POSIX)

If the needs of your project fall within the capabilities of a standard C run-time library (and very few projects do), this is a good strategy and ensures a high level of portability. The main problem with this strategy is the limited range of facilities provided by standard C run-time libraries.

1.5.1 Using ANSI/ISO Standard C/C++ Libraries

Not to be confused with writing ANSI-compliant source code.

If you write your source code using only ANSI/ISO standard C or C++ library facilities (functions or classes), your application should compile with any ANSI compliant compiler and run on the platform targeted by the compiler and run-time library.

ANSI Standard C runtime libraries provide the following functionality:

· Character device I/O (including files and consoles)

· Character and string manipulation/comparison

· Memory (heap) allocation

· Mathematical

· Signals

· Date and time

· Utility (e.g. qsort)

· Diagnostics (assertions)

ANSI Standard C++ runtime libraries provide the following additional functionality:

· Algorithms

· I/O streams

· Exception handling

· Containers (queues, sets, linked lists, etc.)

However, the ANSI C and C++ standard libraries do not include the facilities necessary for supporting the following types of applications:

· Graphical (including GUI)

· Sound/tone generation

· Multi-threaded

· Inter-process communications

· Network communications

· File system directory operations

· Kernel-mode programming (e.g. device drivers)

· and much more…
Due to the limited nature of the ANSI Standard C and C++ libraries, the vast majority of applications will require facilities from non-ANSI run-time libraries.

In addition, the ANSI Standard C/C++ libraries make assumptions about the capabilities of the target platform. For example, if the target platform does not support a character I/O device (e.g. a text-mode console), many of the ANSI standard C/C++ library facilities may have no effect (e.g. printf).

1.5.2 Using POSIX C Libraries

POSIX is an IEEE family of standards, known more formally as the Portable Operating System Interface for Computer Environments. POSIX is derived mostly from various versions of the Unix operating system. The original, trial-use, standard published in 1986 was actually called IEEE-IX (IEEE's version of Unix). However, this was rapidly changed to POSIX in time for the second printing (also in 1986).

It’s important to note that POSIX is a collection of standards, only some of which define the facilities available in a C run-time library. The POSIX standard that defines the operating system’s C Language interfaces (APIs) is 1003.1 (also known as POSIX.1):

· Section A: Base Unix API
· Most file and directory operations: read, write, open, close, lseek, fnctl, mkdir, rmdir, chdir, link, unlink, opendir, readdir, fsync.

· Section B: Real-time extensions
· Async I/O

· Semaphores (only for semaphores used in a single process)

· Reliable signals (meaning queueable real-time signals, subject to the limit of the maximum number of outstanding real-time signals)

· Message queues

· Time related functions (nanosleep)

· Section C: POSIX threads
· Threads
· Semaphores
· Mutexes
1.5.2.1 POSIX on Windows

The POSIX subsystem on Microsoft Windows NT strictly follows the POSIX 1003.1-1990 standard (no thread, real-time, or IPC facilities) and has serious limitations:

· Only available on NT-based operating systems

· Applications can only launch other POSIX applications
· Applications cannot call any Win32 APIs
· Applications cannot implicitly or explicitly load a Win32 DLL
· Applications do not have access to any networking APIs such as pipes or sockets
· Applications do not have any source level debugger support
Microsoft and Borland C/C++ compilers do not provide POSIX.1 compliant run-time libraries. Some functions in the POSIX.1 specification are provided by these RTLs. Borland provides a larger number of POSIX functions, but still falls far short of complete POSIX.1 compliance.

POSIX Libraries for Win32

Support for POSIX.1 facilities on Windows are provided by the following products:

	Product
	License
	Web-site

	Cygwin
	GPL
	http://sources.redhat.com/cygwin/

	PW32
	LGPL
	http://pw32.sourceforge.net/

	Pthreads-win32
	LGPL
	http://sources.redhat.com/pthreads-win32/

	UWIN
	Commercial
	http://www.research.att.com/sw/tools/uwin/

	MKS Toolkit/Enterprise
	Commercial
	http://www.datafocus.com/products/tk/ds_tkedev.asp

	Microsoft Interix
	Commercial
	http://www.microsoft.com/windows2000/interix/

1.6 Utilizing a Cross-platform Abstraction Layer

A cross-platform abstraction layer is an API or framework that provides implementations of standard run-time and operating system facilities for multiple target platforms. The API makes no attempts to directly emulate or mimic the facilities of a particular operating system. This strategy is best used for new projects that wish to target multiple platforms.

1.6.1 Netscape Portable Runtime (NSPR)

http://www.mozilla.org/projects/nspr/
The Netscape Portable Runtime (NSPR) is an open source C library that provides a platform-neutral API for system level and libc like functions. The API is used in the Mozilla client, many of Netscape/AOL/iPlanet's and other software offerings. NSPR provides platform independence for non-GUI operating system facilities. These facilities include:

· Threads and Synchronization

· File and Network I/O

· Memory management

· Time management

· Library management

· Support for 64-bit platforms

· Atomic operations

· Environment variables

· Instrumentation

· Process creation

· List management

· Debug aids

· String manipulation

· Command line option processing

· Arenas

· Hash tables

· Events

· Read/Writer locks

The current NSPR implementation supports Macintosh (PPC), Win32 (WinNT, Win9x) and 20+ versions of Unix and is still expanding. The basic API is stable and expected to remain that way.

Somewhat related to NSPR is the Netscape XPCOM (Cross-platform Component Object Model), a framework for writing cross-platform, modular software: http://www.mozilla.org/projects/xpcom/.

Borland CLX (Component Library for Cross-platform Development)
CLX includes classes/components organized into the following categories:

· BaseCLX(RTL classes and components

· VisualCLX(native GUI components and data-aware visual controls

· DataCLX(highly scalable data-access components

· NetCLX Web application framework and components

CLX classes and components provide the following facilities:

· Arithmetic routines (including BCD)

· Business and finance routines

· Character set conversions

· Clipboard routines

· Command line option processing

· Comparison routines

· Complex numbers

· Component registration

· Control and form location

· Cursor management

· Database

· Date/time

· Dialog and message routines

· Exception handling

· File management

· Filename management

· Floating point conversion and FPU control

· Geometry and trigonometry

· Graphics

· Help hints

· HTTP, XML, and Web Services

· MBCS and Unicode support

· Measurement conversion

· Memory management

· Menu support

· Mouse handling (including drag’n’drop/dock)

· Multi-tier support

· Number formatting

· Printer support

· Qt / CLX conversion routines

· Random numbers

· Range handling

· Statistical routines

· Streaming routines

· String manipulation

· Thread management

There are currently C++ CLX implementations for:

· Win32/x86: C++Builder 6
· Linux/x86: Kylix 3
1.6.2 Qt

http://www.trolltech.com/products/qt/
Qt is a C++ toolkit for application development. It lets application developers target all major operating systems with a single application source code.

Qt provides a platform-independent API to all central platform functionality: GUI, database access, networking, file handling, etc. The Qt library encapsulates the different APIs of different operating systems, providing the application programmer with a single, common API for all operating systems. The native C APIs are encapsulated in a set of well-designed, fully object-oriented C++ classes.

The Qt/Desktop product family consists of the following products:

· Qt/Windows is designed for MS Windows 95/98/ME, NT4, 2000 and XP.

· Qt/X11 is designed for Linux, Solaris, HP-UX, IRIX, AIX, and many other Unix variants.

· Qt/Mac is designed for Apple Mac OS X.

Both commercial and free software licenses are available. Developers can use any or all of them to target any platform. A non-commercial version of Qt/X11 is the de facto standard C++ toolkit for GUI applications on Linux. The KDE desktop environment is based on Qt/X11.

1.7 Utilizing a Platform Emulation Layer

When converting an existing single-platform project into a cross-platform project, it is often the best solution to emulate, to the extent possible, the original target platform on the new platform(s). This is a common porting technique and there are existing solutions that can be helpful if you employ this strategy.

1.7.1 From Unix to Windows

See section 2.2.2.1, POSIX on Windows.

1.7.1.1 Cygwin

Cygwin is an open-sourced GNU-licensed Unix environment, developed by Red Hat, for Windows which includes a library (cygwin1.dll) that acts as a Unix emulation layer providing substantial Unix API functionality for all 32-bit x86 desktop flavors of Windows.

Unfortunately, you can only use the gcc compiler included with Cygwin and the resulting executables are often slower than when using thinner competing emulation layers.

1.7.1.2 UWIN
UWIN is a proprietary package which provides a mechanism for building and running Unix applications on all 32-bit x86 desktop flavors of Windows with few, if any, changes necessary. UWIN binaries are available for educational, research, and evaluation purposes through their web site. Commercial licenses for UWIN can be obtained from Global Technologies Ltd., Inc. or Wipro International. No source code is provided.

UWIN utilizes either the Microsoft or GNU C/C++ compilers when building Windows-targeted Unix projects.

1.7.1.3 Synchronet XPDEV

The Synchronet XPDEV library provides implementations and wrappers for a small (but critical) subset of Unix and POSIX facilities on Win32 platforms. See section 2.5, Utilizing the Synchronet XPDEV Library for details.

1.7.2 From DOS to Unix

DOS applications that use functions from the conio library (e.g. getch, putch, cputs, cprintf, etc.) will need to use facilities from the Unix curses/ncurses library instead. This can be achieved using the libconio.a, an open source Unix curses implementation of many of the conio facilities. One caveat: the gettext and puttext functions are not implemented.

1.7.3 From Windows to Unix

Borland VCL applications should be converted to CLX. See section 2.3.2, Borland CLX, for details.

If you have an existing (non-VCL) GUI Windows application you wish to build for a Unix target, you may want to investigate the following packages:

	Product
	API
	License
	Web-site

	Winelib
	Win32
	LGPL
	http://www.winehq.com/

	Wind/U
	MFC
	Commercial
	http://www.bristol.com/windu/

	Visual MainWin
	MFC
	Commercial
	http://www.mainsoft.com/

1.8 Utilizing the Synchronet XPDEV Library

The Synchronet cross-platform development library is an LGPL’ed collection of C source and header files that provides:

· Some Win32 API functions on Unix (e.g. _beginthread)

· Some POSIX functions on Windows

· Some standard Unix facilities on Windows (e.g. glob)

· Some RTL-specific functions (e.g. strlwr, stricmp, etc.)

It achieves these goals using C pre-processor macros whenever possible for a minimal impact on performance or executable footprint. The facilities provided are segregated into autonomic modules:

· genwrap – provides “general” facilities including string manipulations and comparison, tone generation (beep), sleep, random number generation, and operating system and compiler information.

· conwrap – provides “console” input facilities for Unix commonly found in conio.h on DOS/Windows platforms: getch() and kbhit().

· dirwrap – provides “directory” facilities: glob for Windows platform, POSIX opendir/readdir for MSC, and simple functions for getting directory information (e.g. filesize, freediskspace, etc.) in a platform-independent manner.

· filewrap – provides “open file” facilities, particularly opening shared files (sopen) on Unix and record locking (lock/unlock) for non-Borland compilers.

· sockwrap – provides “socket” macros making the WinSock API more “Berkley sockets“ compatible.

· threadwrap – provides “thread” facilities: Win32 _beginthread implementation for Unix (using POSIX threads) and POSIX semaphore and mutex implementations for Windows (using macros).

1.8.1 Source code

Source code can be freely downloaded:

· Using FTP: ftp://vert.synchro.net/Synchronet/xpdev.zip
· Using the CVS version control system at cvs.synchro.net
in the src/xpdev directory of the sbbs repository:

cvs -d :pserver:anonymous@cvs.synchro.net:/cvsroot/sbbs login
(just hit return, no password is necessary)

cvs -d :pserver:anonymous@cvs.synchro.net:/cvsroot/sbbs checkout src/xpdev

1.8.2 Genwrap

The header file for this module (genwrap.h) provides the following macro definitions:

· PLATFORM_DESC – description of the target platform (e.g . “Win32”, “Linux”, etc.)

· DESCRIBE_COMPILER(str) – creates a string describing the C compiler, complete with name and version number (e.g. “BCC 5.60”)

· SLEEP(milliseconds) – system call suspending calling thread for specified number of milliseconds and releasing its time-slice to the task scheduler

· BEEP(frequency, duration) – generate a tone at the specified frequency for the specified duration (in milliseconds)

· stricmp and strnicmp (Unix compilers only)

· snprintf and vsnprintf (Microsoft compilers only)

The source file for this module defines cross-platform implementations for:

· missing implementations of strupr(), strlwr(), strrev(), and ultoa()

· int
xp_random(int n)
– generates a random number between 0 and n-1

· char*
os_version(char* str)
– creates a string describing the current operating system in detail (e.g. “Windows NT Version 5.00 (Build 2195)”)

1.8.3 Conwrap

This module provides Unix implementations of DOS/Windows-specific console input functions typically declared in conio.h:

· int
kbhit(void)

– returns non-zero if key hit

· int
getch(void)

– returns immediate single-character keyboard input

1.8.4 Dirwrap

The header file for this module (dirwrap.h) provides the following macro definitions:

· ALLFILES – a string representing the wildcard pattern used to match “all files” in a directory on the target platform (e.g. “*.*”)

· BACKSLASH – a character constant representing the appropriate path delimiter for the target operating system (e.g. ‘\’ for Win32 and ‘/’ for Unix)

· MKDIR – calls the appropriate system call for creating a directory on the file system

· CHMOD – calls the appropriate system call for changing the attributes of the specified file or directory name

· FULLPATH – calls the appropriate system call for converting a relative path into an absolute path

The source file for this module (dirwrap.c) provides implementations for:

· Unix glob() and globfree() on Windows

· POSIX opendir(), readdir(), rewinddir(), and closedir() for Microsoft C

· Unix implementation of _splitpath()

And the following file system abstraction functions:

· BOOL
fexist(char *filespec)

- returns TRUE if given file specification exists

· long
flength(char *filename)

- returns length of specified file, -1 if not found

· time_t
fdate(char *filename)

- returns date/time of file, -1 if not found

· BOOL
isdir(char *filename)

- returns TRUE if filename is a directory

· char*
getfname(char* path)

- returns filename portion of specified path

· int
getfattr(char* filename)

- returns attributes of specified filename

· ulong
getfreediskspace(char* path)
- returns disk space available in specified path

1.8.5 Filewrap

This module provides facilities that either open files or operate on open files referenced by a file descriptor.

The header file for this module (filewrap.h) provides the following macros for Unix, mimicking Borland and Microsoft RTL functions:

· int
chsize(int fd, long size)

· long
tell(int fd)

The source file for this module (filewrap.c) provides implementations of the following functions for non-Borland Unix compilers:

· int
sopen(char *fn, int access, int share)

· long
filelength(int fd)

And provides implementations of the following functions for all non-Borland compilers:

· int
lock(int fd, long pos, int len)

· int
unlock(int fd, long pos, int len)

And the following convenience functions:

· time_t
filetime(int fd)

1.8.6 Sockwrap

This module consists of only a header file (sockwrap.h) that defines macros to unify the WinSock and Berkley socket APIs, including WinSockisms for use with Berkley sockets and standard error macro definitions for use with WinSock.

1.8.7 Threadwrap

The header file for this module (threadwrap.h) provides macro-implementations of POSIX semaphore and mutex APIs for Win32.

The source file for this module (threadwrap.c) provides a POSIX implementation of the Win32 _beginthread function.

Wraptest

A small text/validation program, wraptest, is included with Synchronet XPDEV library. It has been used to verify XPDEV support for the following platforms:

	Compiler
	OS
	Build file
	Build command

	Borland C++
	Win32
	Makefile
	make

	Microsoft Visual C++
	Win32
	Makefile
	nmake msc=1

	GNU C
	Linux
	GNUmakefile
	gmake

	GNU C
	FreeBSD
	GNUmakefile
	gmake

	Borland C++/Kylix 3
	Linux
	GNUmakefile
	gmake bcc=1

The wraptest build environment creates subdirectories for the output (object and executable) files. The subdirectory names are coded in the following format:

<compiler>.<os>.<build>

Where compiler is an abbreviated description of the C compiler (e.g. gcc, bcc, msvc), os is a description of the target operating system (e.g. Win32, Linux, FreeBSD), and build indicates whether the output files are the result of a debug build or a release build. Examples:

· bcc.Win32.release

· gcc.Linux.debug

· msvc.Win32.debug
This segregation of the build output files eliminates the potential for accidentally linking object files built for different targets into an executable. This allows the use of a single source code directory where executables for all the supported target platforms may be built without conflict.

2 Cross-platform Development Issues

2.1 File Systems

One of the most glaring incompatibilities between DOS/Windows operating systems and Unix is in the file systems. The following list contains the most common problems and solutions when attempting to support both operating systems with a single project.

	Problem
	Back-slash (‘/’) path delimiter is not Unix compatible.

	Solution
	Forward-slash (‘/’) is both Unix and DOS/Windows compatible. DOS and Windows C run-time libraries support ‘/’ as a path delimiter.

	Problem
	Unix file systems do not use drive letters (a sign of DOS/Windows’ CP/M heritage).

	Solution
	Do not make assumptions about the existence or non-existence of drive letters (“A:”, “C:”, etc.) in pathnames.

	Problem
	Command-line switches using ‘/’ as a “switch identifier”.

	Solution
	Use ‘-‘ (not ‘/’) for command-line switches. DOS’s use of ‘/’ for command-line switches comes from its CP/M heritage, hence the use of ‘\’ for path delimiters in DOS v2.0 and later. Filenames specified on the command-line beginning in ‘-‘ require an escaping mechanism.

	Problem
	DOS text files contain lines terminated with carriage-return/line-feed pairs (0x0d, 0x0a, e.g. “\r\n”). Unix text files contain lines terminated with line-feeds characters only.

	Solution
	Files opened in “text mode” on DOS/Windows will have “\r\n” automatically converted to ‘\n’ when read, and vice-versa when writing. If data-compatibility is required, open files on DOS/Windows in “binary mode” and do not write carriage-returns (‘\r’) to files. When writing to stdout, the ‘\n’ to “\r\n” conversion is automatically performed on DOS/Windows.

	Note
	Most TCP/IP protocols (e.g. SMTP, POP3, FTP, etc.) call for carriage-return/line-feed terminated lines of text regardless of the host operating system.

	Note
	Source code and build files should use LF-terminated lines, whenever possible, to insure the greatest inoperability (DOS/Windows development tools do not require carriage-returns). Conversely, carriage-returns can interfere with Unix development tools (and often do).

	Problem
	Filenames are case-sensitive on Unix.

	Solution
	Be consistent on what filenames you hard-code in your source. Do not perform any case-conversion on filenames or paths. Be flexible on what types of filenames and paths you accept as input.

	Note
	Beware testing with Samba shares or other hybrid file-systems as they can mask filename case-sensitivity problems.

	Problem
	Wildcard expansion is built into the Unix shell (argc and argv automatically point to the expanded filenames). DOS and Windows command processors perform no wildcard expansion.

	Solution
	Automatic wildcard expansion is available on DOS and Windows by linking with wildargs.obj (Borland) or setargv.obj (Microsoft).

	Problem
	Hard-coded device names (e.g. “/dev/null”, “NUL”, and “LPT1”) are operating system specific.

	Solution
	Use conditional compilation or operating system facilities for access device names.

	Problem
	Unix C libraries do not provide findfirst/findnext mechanism.

	Solution
	Kylix actually does provide an ffblk (Borland) implementation of findfirst/findnext, but for better portability use POSIX opendir()/readdir(), or glob() if wildcard matching is needed.

	Problem
	Windows file systems do not support “write-only” files, so a file created with S_IWRITE permission is effectively created with S_IREAD|S_IWRITE permissions.

	Solution
	Do not rely on write-only files for sensitive data.

	Problem
	File permissions set on Unix with open() and chmod() do not necessarily directly correlate with NT user permissions.

	Solution
	Do not rely on open() and chmod() permission flags to provide cross-platform world/group/user security settings.

	Problem
	Different flavors of Windows and Unix have different absolute maximum lengths for filenames and paths. In addition, POSIX defines a PATH_MAX macro while Windows compilers use a MAXPATH macro for defining the maximum length of pathnames supported.

	Solution
	Determine the shortest “maximum path length” supported by all the targeted platforms and define macro for that value limiting path/filename input to this length.

Architectures

When supporting multiple architectures with a single project, many of the following problems may arise:

	Problem
	Different microprocessor “endianness”. Intel x86 processors are “Little Endian”, meaning they store multi-byte integers in memory “little end first” or LSB (least significant byte) first. Motorola 68K, PowerPC, and most RISC processors are “Big Endian”, meaning they store multi-byte integers in memory “big end first” or MSB (most significant byte) first.

	Solution
	Use macros to convert integers to correct endianness before sending over network or storing in binary data files. The TCP/IP “Network byte order” is defined as Big Endian and both Berkley and WinSock socket APIs provide convenient macros for host to network byte order conversions.

	Note
	Be careful when defining unions and structure bit-fields and assuming a specific byte or bit-order.

Additional architectural issues that may need to be resolved include: multi-processors and multi-byte character strings (Internationalization).

2.2 Compilers

Using different compilers accounts for many cross-platform issues, including the following:

	Problem
	Different integer bit-widths. For example, DOS compilers use 16-bit integers while Win32 compilers and most Unix compilers use 32-bit integers.

	Solution
	Refrain from using “int” keyword unless bit-width is not significant. Use bit-width-specific typedefs or macros instead (e.g. BYTE, WORD, DWORD, int16, int32, etc).

	Problem
	DOS and Windows compilers create object files with .OBJ filename extensions while Unix compilers create object files with .o filename extensions.

	Solution
	Adjust build files to expect the appropriate object filenames for the target platform.

	Problem
	DOS and Windows library files have a .LIB filename extension while Unix library files have a .a extension (and begin with “lib” by convention).

	Problem
	DOS and Windows compilers and linkers link with import libraries (.LIB) to statically link with dynamically loaded libraries (.DLL). Unix compilers and linkers link directly with the dynamically loaded library (.so) file, no “import library” is required.

	Solution
	Adjust build files to expect the appropriate library filenames for the target platform.

	Problem
	Different C/C++ compilers mangle/decorate symbol names in different ways. The most common problem is the pre-pending of underscores to C function names. C++ name mangling is a much more complex problem to solve in a mixed-compiler project.

	Solution
	Use #pragmas or compiler and linker command-line switches to control how symbol names are mangled or expected to be mangled.

	Problem
	Compiler #pragma implementations are inherently non-portable.

	Solution
	Avoid them… if you can.

	Problem
	Different compilers have different behaviors when it comes to how structures and unions are stored in memory. In addition, different compilers use different mechanisms for controlling structure/union packing, padding and data alignment. For example, Microsoft and Borland compilers use “#pragma pack” to control packing while GNU C uses the _pack structure attribute.

	Solution
	Do not make assumptions about how structures and unions are stored in memory. Use conditional compilation or avoid reading and writing structures or unions directly to or from files and devices.

	Problem
	Compilers from different vendors use different command-line switches to control compilation.

	Problem
	Compilers from different vendors have different requirements about the order of command-line parameters.

	Solution
	Adjust build files to conditionally use the appropriate switches and parameter order for the target compiler.

	Note
	Some C/C++ compiler switches are fairly standard:

· -c compile only

· -o specify output file

· -I specify additional include directory

· -L specify additional library directory

· -D define a preprocessor macro

	Problem
	Different compilers create different object file formats (COFF, ELF, OMF).

	Solution
	Segregate output files into target-specific directories to avoid object file conflicts in a mixed-compiler project.

	Problem
	Different compilers may use different default calling conventions, particularly when exporting functions from a shared/dynamically-loaded library.

	Example
	Microsoft Visual C++ defaults to the __stdcall calling convention for DLL-exported functions while Borland C++ defaults to __cdecl.

	Solution
	Use macros, if necessary, to specify the expected calling convention for the target platform.

2.3 Build Tools

· Makefile syntax is not standard (GNU and Borland Make syntax is not compatible)

· Project files are usually vendor specific, and often platform or version-specific

· Scripts used to automate builds are often platform-specific

2.4 Application Configuration

· Unix has no “Windows Registry”
· Use configuration (.ini) files instead
· Use CLX TMemIniFile component

2.5 Devices

· Hardware-enabled applications are difficult to develop cross-platform

· Device access facilities are operating system dependent

· Cross-platform kernel-level (device driver) development can be very challenging

· Invariably requires platform-specific modules

· Seemingly unified platforms (e.g. Win32, Unix) are distinctly different at the kernel level

· exception: WDM, somewhat

Solutions

2.6 Existing Solutions

I’ve covered several existing cross-platform development solutions in the previous sections on emulation and abstraction strategies, and there are certainly many more available that deserve consideration.

2.7 Conditional Compilation

Conditional compilation can be a very useful tool in cross-platform development. Conditional compilation is achieved by:

· Including platform-specific header files:
include/unix/guiwrap.h
include/win32/guiwrap.h

· Building platform-specific source files:
src/unix/getproc.c
src/win32/getproc.c

· Using preprocessor directives in common source files:
#if defined(_WIN32)
 Sleep(1000);
#elif defined(__unix__)
 usleep(1000*1000);
#endif

Avoid overusing preprocessor directives as they can easily obfuscate your source code making future maintenance difficult. If you find yourself making frequence conditional function calls, use macro definitions (or a wrapper function definition) instead.

2.7.1 Operating System Macros

Compilers automatically pre-define preprocessor symbols to indicate the target operating system:

	Symbol
	Operating System

	__unix__
	Any Unix-like OS

	__linux__
	GNU/Linux (use sparingly)

	__FreeBSD__
	FreeBSD (use sparingly)

	BSD
	Any BSD-based Unix

	_WIN32
	Win32-based OS

	__OS2__
	OS/2

	__MSDOS__
	MS-DOS

	__DOS4G__
	Rational 32-bit DOS extender

	__FLAT__
	Other 32-bit DOS extender

Compiler Macros

Compilers automatically pre-define preprocessor symbols that indicate the compiler used, and often the version number:

	Symbol
	Compiler

	__GNUC__
	GNU C/C++ Compiler

	__BORLANDC__
	Borland C++ or C++ Builder Compiler

	__WATCOM__
	Watcom C++

	_MSC_VER
	Microsoft Visual C++

2.7.2 Architecture Macros

Compilers usually pre-define preprocessor symbols that indicate the target architecture. Here are just a few:

	Symbol
	Achitecture

	_M_ALPHA
	DEC ALPHA platforms

	_M_IX86
	Intel x86 processors

	_M_MPPC
	Power Macintosh platforms

	_M_MRX000
	MIPS platforms

	_M_PPC
	PowerPC platforms

	_i386
	Intel 80386 processors

	_i486
	Intel 80486 processors

	_mips
	MIPS processors

	_R3000
	MIPS R3000 processors

