Developing Client/Server Applications for the WIN Server - An Overview

by

Bob Dalton - Developer Relations Manager for Mustang Software Inc.

Copyright 1996 by Mustang Software Inc.

The intent of this document is to give you the Developer an overview of what it will take to program a windows based client/server application to run under the Wildcat! Interactive Net Server. I have intentionally kept it as brief as possible because the source code and flow charts in this document provides much of the specific detail and commentary you as a programmer may require. Examples and illustrated points in this document refer to the source code which came in the same archive this document came in. To compile the source code you will need the wcSDK. To run the executables you will need to have the WIN Server and the Navigator Installed on your system. I highly recommend that you print out all the source code included in the provided archives and this document to make it easier to understand everything you see in the source code.

Check the archive for completeness:

Ensure you have the following listed files:

HscopeS.zip - 32 bit Horoscope Console Mode Service (non-interactive) executable and source code.

TTToeS.zip - 32 bit Tic, Tac, Toe Console Mode Service (interactive) executable and source code.

Sclient.zip - 16 bit SDI mode Demonstrator Client executable and source code

wcDevInf.doc - This document

Hscope.zip - WUP file (contains duplicate Sclient.exe)

TTToe.zip - WUP file (contains duplicate Sclient.exe)

Copyright restrictions:

The source code included in this archive is copyrighted and released under the same restrictions as the code contained in the Mustang Software Inc. wcSDK and should be considered a supplement to it.

Installation instructions and notes:

To compile the source code you will need to regenerate all the dependencies and make the following alterations to the original wcSDK CPP units shown:

For CLOADPXY.CPP:

change #include "common.h" to #include "common1.h".

remark out <afx.h>

For CLOADSYS.CPP:

change #include "common.h" to #include "common1.h".

add #pragma hdrstop under the line above.

Note: If you don’t want to change the original files then just copy them over to the various source code directories you establish and modify them there. The compiler will default to the local directories before going out to try and find the units elsewhere.

To install and run the services:

Unzip the hscopeS.zip and TTToeS.zip archives each into their own specific directories which can be anywhere you want them to be.

Make sure the Wildcat Server is NOT running.

Run ClientInstall.exe from the WC5 directory and install each of the two individual WUP files (Hscope.zip & TTToe.zip).

Run the Wildcat Server.

Run wcOnline.

Run each service manually or alternately you can use WcStart.exe to add them to your Wildcat! startup file list so they are automatically started whenever the Wildcat! Server is started.

Use wcConfig to edit the "Access Profiles" section and add the clients to the "Clients" sub-section.

To install and run the client:

Manually Unzip the super client archive into it's own specific directory OR alternately download it from the WIN server so you can see how that process works (WUP file process).

Run the Navigator.

Run the client.

Special Notes on the Tic, Tac, Toe Game: To test or play this game interactively you will have to have two separate systems running as only one navigator at a time can be running on a single machine, although one Navigator can be running on the same system as the WIN Server. This game is not a polished product by any means and was developed for only one reason - to give you a truly interactive client example you can use to see how it’s done. In a polished product the graphics would be much better and other coding issues, such as what happens when a player is cut off in the middle of a game, would be addressed. As time goes by I will add to both the code and the “polish” and perhaps eventually publish it as a free game for sysops.

On the matter of the “intimidation” factor:

If you are new to it, windows programming can seem be very intimidating to say the least. Add on to that the need to develop client/server applications and it can seem almost impossibly complex at times to those with little experience with either Visual C++, Delphi or Visual Basic compilers. When I undertook the project included in this archive I was new to Visual C++, Client/Server programming and the WIN Server platform so I can appreciate how some of you feel when you approach this for the first time. Even given that complexity I am living proof that a former DOS only turbo pascal door programmer with no prior C++ language experience can successfully overcome the learning curve and write Wildcat! client/server applications. If I can do it in a language unfamiliar to me then most certainly you can do it quicker, easier and with less head scratching then I experienced in your more familiar programming language! When I began this project the hardest thing for me to overcome was conceptualizing the overall process of how things worked and happened in conjunction with the WIN Server. This document was produced solely with that in mind and hopefully it will give you the needed “overview” to get you over that conceptual hump.

Definitions:

Some definitions you will need to become familiar with as it pertains to Wildcat! Client/Server application programming:

WC5: Formally Wildcat! 5 and now known as the Wildcat! Interactive Net Server (WIN Server).

16 bit client: The windows "front end" on the users computer. Except for a small amount of socket programming code and a few specialized function calls, the client program is not much different then any other 16 bit (Win31) application in its complexity.

32 bit server: Here at Mustang we call it the "service" and it runs in conjunction and controlled by the WC5/WIN Server.

WUP: Wildcat! Upgrade File.

At this time graphical non-ansi/ascii applications for the WIN Server are going to have to be either 16 bit client/32 bit server OR HTML (32 bit server side only) based.

Why Client/Server?

For all but the most simple and undemanding applications you are probably going to have to go the client/server route. Why?

As several messages posted in the echoes have pointed out, many users are still using older 2400 and 14.4 modems which make online graphics coming from the server side slow at best. The same thing can be said for sound files as well. The local 16 bit client gets around this problem by doing all graphics, sounds, images and other large size file processing at the local level (ie; on the users computer). By doing it this way all you are pushing out and receiving from your 32 bit application server is just required data like "what button did he push", "where did he move", "what image do I display?" type variable data. A side benefit of this style application is that even those 2400 baud modems will support relatively fast games or applications (or at least it will appear that way to the user anyway which is all that matters).

The server side (which is 32 bit) will essentially act as the decision hub and data router for your interactive application. The nice thing about the 32 bit service is that there is only ONE copy of the program running and only one entry and exit point for each user. Also any program data you want can be made "global" to all users. This is accomplished by the use of "Multi-threading". The service is normally running ALL the time and not ran and shut down as needed, although it can be programmed to do that if required. This "one running copy" solves many of the multi-node problems we as developers have encountered in the DOS world of the past. No such thing as 10 copies of the same program running at the same time here!

Why a 16 bit Client?

Some of you have asked why a 16 bit Win31 client and not a Win95 32 bit client? For now the vast majority of windows users out there have only version 3.1 at present. If we did not have a 16 bit client those folks would be left out and demand for your applications would be reduced. Over time this will change and we will adapt as well at this end. The nice thing about a 16 bit client is that it will work just as well on a Win95 system. Just something to think about...

The way things work:

When you first start up any client certain things need to happen and in a certain order. The flow chart below is tied to my Super Client source code and best illustrates what must be done:

�

After you successfully start up the Super Client the next issue becomes one of sending data from your client to the service and receiving data from the service. The below flow chart is tied to the TTToe.CPP unit and will give you some idea how this can be done:

�

As with start up each client must perform some actions upon shutdown. As before this is best illustrated with a flowchart (tied to the super client source code):

�

Before we move on to the 32 bit service side it’s important to understand how clients interact with each other through the service. Each new client which logs on with your service will be given it’s own thread. These threads do not directly interact with each other and all data within their specific thread code is not accessible by any other threads and is considered local data. Global data provides the medium in which clients can interact with each other. The flow chart below illustrates this and the TTTOE.CPP unit in both the client and service is the best source code example:

�

The TTTOE.CPP unit in the Tic, Tac, Toe Service has been set up in each thread to monitor changes in the global data and notify owning clients as to those changes. The service code for each thread has been written to “cycle” so that when it is not handling incoming or outgoing data for that thread it is monitoring changes in the global data. When a change in the global data is noted then further actions occur which ultimately leads to the owning client being notified. The only alternative to this for a turn oriented game such as Tic, Tac, Toe would be to have the non-moving client constantly poll the service for changes, to see if it can move, etc. Needless to say this can be rather inefficient and I would not recommend you use it.

As with the client certain actions are required by the service upon startup. Here is the flowchart which shows what must happen:

�

Likewise upon shutdown certain actions are also required:

�

I’m done programming - what now?

When your client/server application is completed and ready to distribute you should use Install Shield or a similar program to generate an installation script to install your service on the sysop’s computer in it’s own specific directory. In this directory will be contained the 32 bit service, supporting files and the WUP file(s) which will contain the client, the client Inf file and any supporting files your client requires. The sysop should be instructed that after installation is over ClientInstall.exe should be run to install the WUP file(s) for download to users and to see page 106 (Starting Client Programs) of the WC5 System Operators Guide for installing a link to your client/service from a HTML page or page 136 of the new WIN Server Administrator’s Guide. For further information on the WUP process see page 37 (Installing and upgrading Navigator Clients) of the Navigator API Book which came with your copy of the wcSDK and Page 109 (Distributing Wildcat! Navigator to your Callers) of the WC5 System Operators Guide or page 142 of the new WIN Server Administrator’s Guide.

Final (for now) comments:

I consider this document to be an “evolving” work in progress and as such it will change, be added to, or whatever as time goes by. Comments, recommendations, additions, or corrections are always welcome and should be sent via email to bob.dalton@mustang.com

Bob Dalton

De
